Influence of CO2 scrubbing from biogas on the treatment performance of a high rate algal pond

Author:

Heubeck S.1,Craggs R.J.1,Shilton A.1

Affiliation:

1. National Institute of Water and Atmospheric Research, PO Box 11–115, Hamilton, New Zealand

Abstract

Biogas produced by anaerobic treatment of wastewater can be collected and used for power generation. However, the biogas may require scrubbing to prevent corrosion by H2S and to improve engine efficiency by reducing the CO2 content. HRAP can be used to scrub biogas during the daytime when they are carbon-limited and have high pH. This study investigates the influence of the carbon dioxide addition from biogas scrubbing on high rate algal pond wastewater treatment performance (in terms of BOD, NH4-N, DRP and E. coli removal) and algal production (growth and species composition). Batch culture experiments were conducted in laboratory microcosms (2 L) and outside mesocosms (20 L). Results indicate that CO2 addition and reduced culture pH increased algal production and nutrient assimilation, decreased high pH mediated nutrient removal processes (phosphate precipitation and ammonia volatilisation), but had little influence on the ability of the culture to remove filtered BOD5. Disinfection, as indicated by E.coli removal; was reduced, however, further research on virus removal, which is not affected by culture pH, is required. These preliminary findings indicate the potential to scrub CO2 from biogas using high rate pond water without decreasing the effectiveness of wastewater treatment and enabling increased recovery of wastewater nutrients as algal biomass.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3