Modification of granular activated carbon surface by chitosan coating for geosmin removal: sorption performances

Author:

Vinitnantharat S.1,Rattanasirisophon W.1,Ishibashi Y.2

Affiliation:

1. Division of Environmental Technology, School of Energy and Materials, King Mongkut's University of Technology, Thonburi Pracha-uthit Road, Bangmod, Bangkok, 10140 Thailand (E-mail: soydoa.vin@kmutt.ac.th; weera_ratta@yahoo.com)

2. Department of Civil and Environmental Engineering, Tohoku Gakuin University, Chuo1-13-1, Tagajo, Miyagi, 985-8537, Japan (E-mail: yishi@tjcc.tohoku-gakuin.ac.jp)

Abstract

This study presents the results of the sorption performances for geosmin removal by sorption onto granular activated carbons (GAC) manufactured from different raw materials of coconut shell and bituminous coal. The surface of GAC was modified by chitosan coating. The 90% deacetylated chitosan flakes were used for coating on GAC with the GAC: chitosan ratio of 5:1. The surface of GAC was characterised by scanning electron microscope (SEM) analysis, Fourier transform infrared spectroscopy and measurement of the pH solution of GAC samples. The sorption of geosmin onto the chitosan for both uncoated and coated GACs could be described by the Freundlich adsorption model. Data revealed that the sequence of Freundlich constant (KF) was chitosan coated bitominous coal (CB) > uncoated bituminous coal (UB) > chitosan coated coconut shell (CC) ≅ uncoated coconut shell (UC). The bituminous coal based GAC with chitosan coating had a maximum capacity of 23.57 μg/g which was approximately two-fold of uncoated bituminous coal based GAC. Two simplified kinetic models, pseudo-first order and pseudo-second order, were tested to investigate the sorption mechanisms. It was found that the intraparticle diffusion was a rate controlling step for the sorption and followed the pseudo-second order equation.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3