Advanced oxidation process–biological system for wastewater containing a recalcitrant pollutant

Author:

Oller I.1,Malato S.1,Sánchez-Pérez J.A.2,Maldonado M.I.1,Gernjak W.1,Pérez-Estrada L.A.1

Affiliation:

1. Plataforma Solar de Almería-CIEMAT, Carretera Senés Km 4, 04200 Tabernas (, Almería, ), Spain (E-mail: isabel.oller@psa.es)

2. Departamento de Ingeniería Química, Universidad de Almería, Carretera Sacramento s/n. 04120, Almería, Spain (E-mail: jsanchez@ual.es)

Abstract

Two advanced oxidation processes (AOPs), ozonation and photo-Fenton, combined with a pilot aerobic biological reactor at field scale were employed for the treatment of industrial non-biodegradable saline wastewater (TOC around 200 mg L−1) containing a biorecalcitrant compound, α-methylphenylglycine (MPG), at a concentration of 500 mg L−1. Ozonation experiments were performed in a 50-L reactor with constant inlet ozone of 21.9 g m−3. Solar photo-Fenton tests were carried out in a 75-L pilot plant made up of four compound parabolic collector (CPC) units. The catalyst concentration employed in this system was 20 mg L−1 of Fe2 +  and the H2O2 concentration was kept in the range of 200–500 mg L−1. Complete degradation of MPG was attained after 1,020 min of ozone treatment, while only 195 min were required for photo-Fenton. Samples from different stages of both AOPs were taken for Zahn–Wellens biocompatibility tests. Biodegradability enhancement of the industrial saline wastewater was confirmed (>70% biodegradability). Biodegradable compounds generated during the preliminary oxidative processes were biologically mineralised in a 170-L aerobic immobilised biomass reactor (IBR). The global efficiency of both AOP/biological combined systems was 90% removal of an initial TOC of over 500 mg L−1.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3