Affiliation:
1. North China University of Water Resources and Electric Power, Zhengzhou 450046, China
2. China Institute of Water Resources and Hydropower Research, Beijing 100038, China
Abstract
Abstract
In this study, a deep learning model based on zero-sum game (ZSG) was proposed for accurate water demand prediction. The ensemble learning was introduced to enhance the generalization ability of models, and the sliding average was designed to solve the non-stationarity problem of time series. To solve the problem that the deep learning model could not predict water supply fluctuations caused by emergencies, a hypothesis testing method combining Student's t-test and discrete wavelet transform was proposed to generate the envelope interval of the predicted values to carry out rolling revisions. The research methods were applied to Shenzhen, a megacity with extremely short water resources. The research results showed that the regular bidirectional models were superior to the unidirectional model, and the ZSG-based bidirectional models were superior to the regular bidirectional models. The bidirectional propagation was conducive to improving the generalization ability of the model, and ZSG could better guide the model to find the optimal solution. The fluctuations in water supply were mainly caused by the floating population, but the fluctuation was still within the envelope interval of the predicted values. The predicted values after rolling revisions were very close to the measured values.
Funder
National Key Research and Development Program of China
National Natural Science Foundation of China
Subject
Management, Monitoring, Policy and Law,Water Science and Technology,Geography, Planning and Development
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献