Thermophilic sulfate and sulfite reduction with methanol in a high rate anaerobic reactor

Author:

Weijma J.12,Haerkens J.-P.2,Stams A.J.M.1,Hulshoff Pol L.W.2,Lettinga G.2

Affiliation:

1. Department of Biomolecular Sciences, Laboratory of Microbiology, Wageningen University, Hesselink van Suchtelenweg 4, 6703 CT, Wageningen, The Netherlands

2. Department of AEST, Sub-department Environmental Technology, Wageningen University, “Biotechnion”, Bomenweg 2, P.O. Box 8129, 6700 EV, Wageningen, the Netherlands

Abstract

Thermophilic sulfite and sulfate reduction offers good prospects as part of an alternative technology to conventional off-gas desulfurization technologies. Thermophilic sulfate and sulfite reduction with methanol as the sole carbon and energy source for the sulfate reducing bacteria was studied in lab-scale Expanded Granular Sludge Bed (EGSB) reactors operated at 65 °C and pH 7.5. At a hydraulic retention time (HRT) of 4 hr, sulfite and sulfate elimination rates of up to 0.22 mol-S.l-1.day-1 (100% elimination) and 0.15 mol-S.l-1.day-1 (80% elimination), respectively, were achieved. Sulfite and sulfate reduction accounted for 85–90% of the electrons released during degradation of methanol. In addition, 10–13% and 1–2% of the consumed methanol was converted to acetate and methane, respectively. Acetate was not utilized as electron donor for sulfate reduction. Acetate production seemed to be linearly correlated to the amount of sulfite and sulfate reduced. Sulfite disproportionating activity of the sludge was demonstrated by the simultaneous appearance of sulfide and sulfate in batch tests with sulfite. However, sulfite disproportionation rates were 4 times lower than sulfate reduction rates with methanol. The results clearly demonstrate that methanol can be efficiently used as electron and carbon source to obtain high sulfite and sulfate elimination rates in thermophilic bioreactors.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3