Operation of different membrane bioreactors: experimental results and physiological state of the micro-organisms

Author:

Rosenberger S.1,Witzig R.2,Manz W.2,Szewzyk U.2,Kraume M.1

Affiliation:

1. Department of Chemical Engineering, TU Berlin, ACK 7, Ackerstrasse 71-76, 13355 Berlin, Germany

2. Department of Microbial Ecology, TU Berlin, OE 5, Franklinstrasse 29, 10587 Berlin, Germany

Abstract

Lab-scale and pilot-scale activated sludge bioreactors with integrated microfiltration membranes were operated over a period of up to three years. During the entire operation period no excess sludge was removed from the bioreactors apart from sampling, resulting in highly concentrated biomass in the reactors. The dry weight of the sludge ranged from 15 to 23 g MLSS l–1 for a plant fed with municipal wastewater and up to 60 g ll–1 for a lab-scale plant fed with high strength molasses. Stable biomass concentrations were reached at F/M ratios as low as approximately 0.07 kg COD (kg MLSS)–1 d–1. The degradation performance of the analyzed reactors was high and stable. Direct microscopical studies revealed high amounts of free suspended cells and at various times also high numbers of filamentous bacteria. Surprisingly only low numbers of protozoa were observed during most of the time. By use of fluorescent in situ hybridization (FISH) only about 40% to 50% of all bacteria emitted probe conferred fluorescence signals sufficient for detection, compared to around 80% cells detectable in conventional activated sludge. Studies on oxygen consumption rates indicated that the biomass in the bioreactor was substrate limited. These data suggest that substrate is mainly oxidized and not used for growth purposes which offers the possibility to operate membrane bioreactors with significantly reduced secondary sludge production.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3