Reduction of azo dyes by desulfovibrio desulfuricans

Author:

Yoo E. S.1,Libra J.1,Wiesmann U.1

Affiliation:

1. Institut für Verfahrenstechnik, Technische Universität Berlin, Sekr. MA 5-7, Strasse des 17. Juni 135, 10623 Berlin, Germany

Abstract

Azo dyes are widely used in textile finishing, and have become of concern in wastewater treatment because of their color, bio-recalcitrance, and potential toxicity to animals and humans. Thus, wastewater with azo dyes must be decolorized and furthermore mineralized in appropriate systems combining biological and chemical processes. In this study, the potential for sulfate reducing bacteria (SRB) to decolorize azo dyes was studied, employing the pure culture of Desulfovibrio desulfuricans (D. desulfuricans) with varying sulfate levels. Under sulfate-rich conditions, the sulfide produced from sulfate respiration with pyruvate (electron donor) by D. desulfuricans chemically decolorized the azo dyes C. I. Reactive Orange 96 (RO 96) and C. I. Reactive Red 120 (RR 120). Under sulfate-depleted conditions (≤0.1 mmol/L), the decolorization of RO 96 and RR 120 occurred in correlation with the fermentation of pyruvate by D. desulfuricans. It is suggested that the electrons liberated from the pyruvate oxidation were transferred via enzymes and/or coenzymes (electron carriers) to the dyes as alternative terminal electron acceptors, giving rise to decolorization, instead of to the protons (H+), resulting in the production of H2. Both decolorization pathways were compared in light of bioenergetics and engineering aspects.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

Cited by 61 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Biodegradation and decolorization of trypan blue azo dye by marine bacteria Vibrio sp. JM-17;Biocatalysis and Agricultural Biotechnology;2023-08

2. Application of microbial sulfate-reduction process for sulfate-laden wastewater treatment: A review;Journal of Water Process Engineering;2023-04

3. Extracellular azo dye oxidation: Reduction of azo dye in batch reactors with biogenic sulfide;Phosphorus, Sulfur, and Silicon and the Related Elements;2022-03-07

4. Geomicrobiology, Biotechnology, and Industrial Applications;Sulfate-Reducing Bacteria and Archaea;2022

5. Bacterial and fungal degradation of dyes;Development in Wastewater Treatment Research and Processes;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3