Anaerobic degradation of 1,2-dichloropropane in batch and continuous culture

Author:

Hauck R.1,Hegemann W.1

Affiliation:

1. Institute for Environmental Protection, Department of Sanitary Engineering, Technical University Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany

Abstract

Microbial degradation of 1,2-dichloropropane (DCP) was studied in a laboratory scale continuous flow fluidized bed reactor using polyurethane foam cubes as a carrier for the mixed culture. The anaerobic enrichment culture derived from Saale River sediment and was immobilized prior to utilization in the reactor. The DCP degradation performance was monitored by direct gas chromatographic analysis. A variety of different co-substrates were investigated for their ability to support DCP dechlorination during reactor operation. Continuous DCP removal efficiencies over 90% were achieved with a model water at substrate loading rates of up to 700 μmol/(L · d) with methanol and sodium acetate as co-substrates at 24 h hydraulic retention time in the reactor. In batch experiments the degradation potential of the culture for other chlorinated organics, like 1, 2, 3-trichloropropane and dichlorodiisopropyl ether was investigated.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3