Kinetics and Modelling of Aerobic and Anaerobic Film Growth

Author:

Capdeville B.,Nguyen K. M.

Abstract

Our fundamental studies of the kinetics of growth and substrate removal by aerobic and anaerobic biofilms have shown that the process comprises six phases : the latent, dynamic, linear, decrease, stabilization and detachment phases. During these experiments we also observed:-steady state functioning in the liquid bulk from the end of the dynamic phase. At this point a very thin pseudo-thickness of biofilm was observed (50 µm maximum).-steady state functioning relative to the observed biofilm mass, reached in the stabilization phase, the corresponding thickness being generally several hundred microns. To explain this phenomenon we suggest a new biofilm modelling hypothesis, based on physiological aspects, which consists of defining two types of bacteria : active bacteria (Ma) responsible for substrate removal and characterized by a specific growth rate (µo), and inert or deactivated bacteria (Md) which play no role in the removal process but are responsible for the observed accumulation of biofilm. Using this hypothesis, it is possible to modelize the dynamic and linear phases of growth of total biofilm dry matter (Mb) and carbon substrate removal kinetics. This model enables the exponential growth rate (µo), the accumulation rate (K) and the maximum quantity of active bacteria (Ma)max to be calculated. In another series of experiments, we studied the influence on these parameters of several factors which affect growth, such as the carbon substrate concentration provided by the feed (So) and the dissolved oxygen for the aerobic biofilms. The results demonstrate that the biological constants are strongly dependent on (So). The same is true for the volumetric substrate removal rate(kov), which shows that the process always depends on the reaction. Thus we have established that the substrate metabolization reaction occurs at the biofilm-liquid interface, and that it is preferable to use thin biofilms for an attached culture industrial process. This has been done by optimizing the surface and volume properties of new granular materials called OSBG (Optimized Support for Biological Growth). Initial results, notably for three-phase fluidized bed carbon removal, show that it is possible to eliminate very high carbon loading (10 to 15 kg TOD.m3.day−1) under very stable conditions with a very small quantity of active biomass (0.5 D.W. m). In addition, excess sludge production is relatively low and respirometric studies performed in situ with a gas phase mass spectrometer confirm the very high catabolic activity of thin biofilm.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3