Aerated Biofilters for Nitrification and Effluent Polishing

Author:

Paffoni Catherine1,Gousailles Michel1,Rogalla Frank2,Gilles Pierre3

Affiliation:

1. CRITER – Centre de Recherche Interdepartemental pour le Traitement des Eaux Residuaires, 82, Avenue Kléber, F 92700 Colombes, France

2. Anjou Recherche – Centre de Recherche Compagnie Générale des Eaux – OTV, Chemin de la Digue, F 78600 Maisons Laffitte, France

3. OTV – Omnium de Traitement et de Valorisation, 11, Avenue Dubonnet, F 92407 Courbevoie, France

Abstract

To comply with new effluent discharge standards of 10 mg TKN/l, different upgrading methods for a highly loaded activated sludge plant were explored. As a conclusion, demonstration units were tested to assess process feasibility and performance data of an innovative technology. The Achères Treatment plant of the city of Paris is currently being extended to purify a flow of about 2 700 000 m3/d, corresponding to 8 Million population equivalents. Conventional activated sludge, loaded at about 0.6 kg BOD/kg SS d, delivers an effluent of 30 mg/l for both BOD and SS. To achieve nitrification, a considerable multiplication of basin volume and clarifier area would be required. In the densely urbanised Paris area, insufficient space is available for a such an extension. Therefore, new technology for plant upgrading was tested on industrial scale. Biological aerated filters combine aerobic degradation of pollutants with physical retention of suspended solids in one reactor. A high concentration of active biomass can be retained in the packed bed, and nitrifying bacteria can be attached to the filter media. Removal efficiency becomes thus independent of clarification and sludge settling, and ammonia oxidation can be achieved without sludge age requirements. Four parallel units were installed on the Colombes research platform, handling a total flow of 3000 m3/d. An extensive demonstration test program was carried out over a period of five years to assess the feasibility and performances of the process in line with a conventional activated sludge plant. The limits of loading to achieve different residual ammonia concentrations were studied, and the influence of temperature on biological and hydraulic parameters was verified. Backwash requirements and residual values of carbonaceous and suspended matter were explored in dependence on influent values and filtration velocity. At 13 °C, an ammonia load of 0.5 kg N/m3 d was completely oxidized. A concentration of 20 mg/l N-NH4 can thus be totally converted with an empty bed contact time of 1 hour. The Arrhenius temperature coefficient for nitrification was measured as 1.05. Biodegradable carbonaceous and suspended matter was completely removed at filtration velocities higher than 4 m/h, yielding an effluent of less than 5 mg/l for both SS and BOD. Backwash frequency was less than once per day, and a maximum of 5 % of the filter flowrate was used for backwashing.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3