Affiliation:
1. Graduate Institute of Environmental Engineering, National Central University, Chungli 320, Taiwan
2. Sewerage Engineering Department, Public Work Bureau, Municipal Government of Taipei, Taiwan
Abstract
This study examines the effects of sludge retention time (SRT) and dissolved oxygen (DO) on COD, nitrogen and phosphorus removal in a combined activated sludge - biofilm process. Various SRT (5, 10, 12 and 15 days) and dissolved oxygen (0.1, 0.5, 1.0 and 2.0 mg/l in aerobic stage) conditions are performed during the hybrid process. Experimental results indicate that SRT significantly affects the behavior of nitrogen and phosphorus removal, although the variation of COD removal is only slight in different SRT experiments. The SRT should be controlled for longer than 10 days to achieve efficient nitrogen removal. However, a SRT less than 12 days is deemed necessary to complete the phosphorus removal. The process displays similar characteristics when dissolved oxygen is operated between 1.0 to 2.0 mg/l in the aerobic stage. Moreover, analyzing polyhydroxyalkanoates (PHAs) reveals that phosphorus release and uptake are closely related to PHAs accumulation and utilization, respectively, during anaerobic, anoxic and aerobic stages of the process. The ratio of phosphorus uptake and PHAs utilized, rP/PHAs, denotes a dissimilar trend during anoxic and aerobic stages. The sludge has a high efficiency in utilizing PHAs for phosphorus uptake in anoxic stage when it is under lower COD-SS loading conditions. The value of rP/PHAs ranges from approximately 0.1 to 1.0 mg P/mg PHAs. In addition, experimental results also demonstrate that anoxic phosphorus uptake can improve phosphorus removal in biological nutrient removal processes.
Subject
Water Science and Technology,Environmental Engineering
Cited by
25 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献