Anaerobic pre-treatment of petrochemical effluents: terephthalic acid wastewater

Author:

Kleerebezem Robbert,Mortier Joost,Hulshoff Pol Look W.,Lettinga Gatze

Abstract

During petrochemical production of purified terephthalic acid (PTA, 1,4-benzene dicarboxylic acid), a large quantity of concentrated effluent is produced. Main polluting compounds in this wastewater are terephthalic acid, acetic acid and benzoic acid in decreasing order of concentration. Acetic acid and benzoic acid are known to be rapidly degraded in high rate anaerobic treatment systems, such as Upflow Anaerobic Sludge Bed (UASB) reactors. Concerning the kinetics of anaerobic mineralization of terephthalic acid, however, no information is available in literuature. Therefore our work focused on the anaerobic degradation of neutralized terephthalic acid (disodium terephthalate) in laboratory scale UASB-reactors and batch reactors. It was found that high rate anaerobic treatment of terephthalate was difficult to obtain due to the low growth rate (μ ≈ 0.04 day−1) of the terephthalate mineralizing mixed culture. The maximum removal capacity of a lab-scale UASB-reactor was found to be 3.9 g COD.1−1 .day−1 at a loading rate of 4.5 g COD.1−1 .day−1 and a hydraulic retention time of 24 hours. Terephthalate was used as sole carbon source during these experiments. Addition of small amounts of sucrose (co-substrate) to the influent, as a source of reducing equivalents, was found to have a negative influence on the anaerobic degradation of terephthalate. Also benzoate was found to inhibit the mineralization of terephthalate. Batch-toxicity experiments showed that terephthalate is not toxic to any of the species involved in its mineralization. Based on these observations, a staged anaerobic reactor system is suggested for the anaerobic pre-treatment of PTA-wastewater.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3