Wet air oxidation: kinetics of reaction, carbon dioxide equilibrium and reactor design - an overview

Author:

Debellefontaine H.1,Cammas F. X.1,Deiber G.1,Foussard J. N.1,Reilhac P.1

Affiliation:

1. Laboratoire d′Ingénierie des Procédés de l′Environnement, Dépt. de Génie des Procédés Industriels, Institut National des Sciences Appliquées, Complexe Scientifique de Rangueil, 31077 Toulouse Cedex 4, France

Abstract

Aqueous wastes containing organic pollutants can be efficiently treated by wet air oxidation (WAO), i.e. oxidation by molecular oxygen in the liquid phase, under high temperature (200 to 325°C) and pressure (up to 150 bar). In western Europe, only an handful of industrial plants are in operation. Most of them were designed by extrapolating results from pilot plants. Only a very few studies have been devoted to the scientific design of such reactors (bubble columns). This paper discusses what needs to be known for this scientific design. The usual design methods assume that the column is divided into a number of cells. Each cell is a perfectly mixed reactor connected with the contiguous cells. Reliable data and models are available for hydrodynamics (axial dispersion, gas hold up) and mass transfer. Data are also needed for the kinetics of chemical reactions and are available from numerous sources, but have not yet been generalised. The thermodynamics (fugacities and enthalpy) of the gas phase can be determined with the Peng Robinson equation of state, and the Henry law for the solubility of gases in water describes the equilibrium conditions. But additional data are needed for water solutions containing salts. This paper describes a method that allows such a determination to be made by establishing rigorous balances on a batch autoclave. At present, these data are being used to implement a computer program aimed at determining the performance of a wet air oxidation reactor depending on the various operating parameters. Some typical profiles within the reactor are presented, establishing that the pH of the solution is a very important parameter.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3