Prevention of bacterial growth in drinking water distribution systems

Author:

Piriou Ph.1,Dukan S.1,Levi Y.1,Jarrige P. A.2

Affiliation:

1. Lyonnaise des Eaux, CIRSEE, 38 rue du Président Wilson, 78230 LePecq, France

2. SAFEGE, Parc de l'île, 15-17 rue du Port, 92007 Nanterre, France

Abstract

Of the many causes of drinking water quality deterioration in distribution systems, biological phenomena are undoubtedly the subject of the most study. They are also the most closely monitored because of short-term public health risks. A determinist model was developed to predict bacterial growth in the network and to locate the zones where the risks of biological proliferation are the highest. The model takes into account the growth of suspended and fixed bacteria, the consumption of available nutrients in the bulk water and in the biofilm layer, the influence of chlorine residual on the mortality of suspended and fixed biomass, the deposition of suspended bacteria and the detachment of biofilm cells, the influence of temperature on bacterial activity and chlorine decay. The model is constructed using hydraulic results previously generated by PICCOLO, the SAFEGE hydraulic computer model and a numerical scheme to predict bacterial count at each node and on each link of a network. The model provides an effective and each way to visualise on a computer screen variations in water quality in the network. The first model calibration was done using data obtained from a pipe loop system pilot. A validation of the model has been carried out by means of measurement campaigns on various real networks. This predictive model of bacterial growth in distribution systems is a unique approach for the study, diagnosis and management of distributed water quality. This tool is helpful for proposing strategies for the management of distribution systems and treatment plants and to define conditions and locations of high bacterial counts in relation to hydraulic conditions.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Environmentally friendly antibiofilm strategy based on cationized phytoglycogen nanoparticles;Colloids and Surfaces B: Biointerfaces;2021-11

2. Cold plasma to control biofilms on food and in the food-processing environment;Advances in Cold Plasma Applications for Food Safety and Preservation;2020

3. Biofilms;Women in Water Quality;2019-06-30

4. Inoculation density and nutrient level determine the formation of mushroom-shaped structures in Pseudomonas aeruginosa biofilms;Scientific Reports;2016-09-09

5. Zoonotic Infections: The Role of Biofilms;Springer Series on Biofilms;2011

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3