Effects of flow velocity and depth on the rates of reaeration and bod removal in a shallow open channel

Author:

Leu Horng-Guang,Ouyang C. F.,Pai Tze-Yi

Abstract

This study developed an analytical solution of reaeration rate coefficient (K2) and modified the equation of BOD removal in a shallow artificial open channel. A series of well-controlled batch tests were carried out to measure the K2 and BOD removal rate in the channel at different flow conditions. The results of these tests indicated that measured K2 within the developing zone of the laminar boundary layer is better described by the analytical solution of this study than by the five semi-empirical formulae mentioned in this paper. On the other hand, a resuspension-sedimentation coefficient, Rs, was added to the BOD removal equation to describe the variation in BOD due to varied flow conditions. Based on the results of the experimental data the following conclusions in the BOD removal process were reached. It was found that a direct correlation exists between the flow velocity to depth ratio (U/h) and the deoxygenation rate coefficient (K1), but there is an inverse correlation between U/h and Rs as well. This modified BOD removal equation can predict BOD removal rate at different travel times or known downstream distances in an open channel under varied flow conditions.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3