Removal of ppb-level DDTs from aqueous solution using organo-diatomites

Author:

Tan Lingzhi12,Qi Shihua1,Zhang Jiaquan13,Xing Xinli1,Chen Wei1,Zhang Yuan1,Wu Chenxi1

Affiliation:

1. State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China

2. Water Environment Monitoring Center of Yangtze River Basin, Yangtze River Valley Water Resources Protection Bureau, Wuhan 430010, China

3. School of Environmental Science and Engineering, Hubei Polytechnic University, Huangshi 435003, China and Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China

Abstract

Three modified organo-diatomites (ODs) were used for removal of o,p′ dichlorodiphenyldichloroethylene (o,p′-DDE), p,p′ dichlorodiphenyldichloroethylene (p,p′-DDE) and p,p′ dichlorodiphenyltrichloroethane (p,p′-DDT) from water. It was found that the adsorption of dichlorodiphenyltrichloroethane (DDT) and its metabolites (DDTs) depended greatly on the type and concentration of modifying agent, the concentration of adsorbent and the initial concentration of DDTs. The hydrophobic characteristics of ODs–DDTs interactions were verified by measuring the amounts of DDTs adsorbed on ODs. The analysis of contact angle and total organic carbon (TOC) measurements revealed that the hydrophilic tails on the ODs surface were replaced with hydrophobic ones by surfactants. The following conditions were strongly suggested to provide the optimum performance for adsorption of DDTs: raw diatomite is modified by cetyltrimethylammonium bromide (CTMAB); dosing quantity of OD is no more than 3.0 g/L. The removal efficiencies of the three pesticides on ODs followed the order: p,p′-DDT > o,p′-DDE > p,p′-DDE. The adsorption efficiencies of ODs for the pesticides followed the order: GZY > GZF > GZYI > GZN. This experiment showed that the fittest models for the experimental data were given by the Redlich–Peterson and homogeneous particle diffusion models.

Publisher

IWA Publishing

Subject

Water Science and Technology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3