Numerical simulation of bare soil water and heat flow under an automated irrigation system

Author:

Ahmed Mohamed H.1,Gutub Saud2

Affiliation:

1. Mechanical Engineering Department, Faculty of Engineering at Rabigh, King Abdulaziz University, Jeddah, Saudi Arabia and Department of Mechanical Engineering, Faculty of Engineering, Assiut University, Assiut, Egypt

2. Civil Engineering Department, Faculty of Engineering, King Abdulaziz University, Jeddah, Saudi Arabia

Abstract

Modern irrigation techniques use automated systems where irrigation schedules are controlled according to certain criteria. The objective of this study is to numerically estimate irrigation events, water content and temperature distributions, evaporation, drainage, and soil water under closed loop automated irrigation systems of a bare soil. The automated irrigation system is activated and deactivated according to the water content value. The governing equations for transient one-dimensional liquid water flow and heat transfer of unsaturated porous media are applied. The energy balance equation at the soil surface is used as an upper boundary condition based on measured meteorological data of Jeddah City. The results show that the current procedure can be applied to simulate different variables under automated irrigation systems. The water content shows periodic behavior, as well as time lags and decreases in amplitude with soil depth. The timing of applied irrigation has an important impact on evaporation and soil temperature. Applying irrigation water during the daytime leads to increased evaporation. The soil surface temperature decreases suddenly when water is supplied in the afternoon, while a slight increase is observed when irrigation is applied at midnight.

Publisher

IWA Publishing

Subject

Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3