Trace level determination of bisphenol-A in wastewater and sewage sludge by high-performance liquid chromatography and UV detection

Author:

Banihashemi Bahman1,Droste Ronald L.1

Affiliation:

1. Civil Eng. Dept, University of Ottawa, 161 Louis Pasteur St, Ottawa, ON, K1N 6N5, Canada

Abstract

The purpose of this study was to develop and optimize a simple and economical method for the extraction and determination of bisphenol-A (BPA), using high-performance liquid chromatography (HPLC) coupled with ultraviolet (UV) detection at environmentally relevant concentrations in both dissolved and particulate phases. To clean-up and pre-concentrate liquid samples, solid-phase extraction (SPE) method was optimized with regard to pH, volume, washing and elution solvents for high recovery of BPA and good clean-up. For sludge samples, four extraction methods, microwave-assisted extraction (MAE), ultrasonication extraction (USE), accelerated solvent extraction (ASE) and high-pressure homogenizer (HPH), were compared for isolation of BPA from activated sludge samples. Analysis was performed by optimized procedures using HPLC–UV. Recoveries of BPA from liquid and solid phases were determined to be 90–105 and 60–90%, respectively. MAE had the highest recovery among examined extraction methods. The method detection limits were 100 ng/L and 100 ng/g dry weight. To validate the method, a mass balance study was conducted with 100 mL spiked mixed liquor volatile suspended solids (VSS) samples from three laboratory-scale porous pot reactors and concentrations of BPA in liquid and solid phases were determined using the optimized conditions. The results had an average 86% overall recovery for all samples.

Publisher

IWA Publishing

Subject

Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3