Optimization of water treatment plant flow distribution with CFD modeling of an influent channel

Author:

Knatz Carrie1,Rafferty Stephen2,Delescinskis Anthony3

Affiliation:

1. CDM Smith, 1925 Palomar Oaks Way, Suite 300, Carlsbad, CA 92008, USA

2. CDM Smith, 50 Hampshire Street, Cambridge, MA 02139, USA

3. United Water New Jersey, 200 Old Hook Road, Harrington Park, NJ 07640, USA

Abstract

In the design of water and wastewater treatment plants, proper flow and solids distribution can be as critical as process design considerations. Insufficient treatment and even plant failures can result from unequal and unmanageable flow and solids distribution. Computational fluid dynamics (CFD) modeling is a valuable tool in the evaluation of flow distribution to multiple units within a treatment process. This article reviews the benefits achieved by performing a CFD analysis of an Infilco high-rate dissolved air flotation (DAF) influent channel prior to finalizing the design of the plant. The CFD model was used to optimize the DAF influent channel configuration with respect to flow distribution to 10 identical process units that were inserted into an existing facility footprint. For the initial configurations modeled, the largest deviation of flow rate to an individual DAF unit was over 60%. Using CFD, design engineers developed a DAF influent channel configuration predicted to achieve less than 10% deviation. The upgraded facility is constructed and in service and the results of the CFD model were confirmed using actual turbidity data, which indicate that the solids are evenly distributed to the DAF process trains.

Publisher

IWA Publishing

Subject

Water Science and Technology

Reference16 articles.

1. Examination of three-dimensional flow characteristics in the distribution channel to the flocculation basin using computational fluid dynamics simulations;Baek;Journal Water Supply: Research and Technology – AQUA,2005

2. Dispersion conduits;Camp;Journal of the Sanitary Engineering Division, ASCE,1968

3. Hydraulic design of flow distribution channels;Chao;J. Environmental Engineering, ASCE,1980

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3