Modification of tea biochar with Mg, Fe, Mn and Al salts for efficient sorption of PO43− and Cd2+ from aqueous solutions

Author:

Akgül Gökçen1,Maden Tuğba Bolat1,Diaz Elena2,Jiménez Eduardo Moreno3

Affiliation:

1. Department of Energy Systems Engineering, Recep Tayyip Erdogan University, Engineering Faculty, 53100 Rize, Turkey

2. Department of Chemical Engineering, Universidad Autonoma de Madrid, Engineering Faculty, 28049 Madrid, Spain

3. Department of Agricultural and Food Chemistry, Universidad Autonoma de Madrid, Faculty of Sciences, 28049 Madrid, Spain

Abstract

Abstract There is a requirement to provide more efficient, sensitive, low-cost materials for remediation of contaminated water. Biochar as a sorbent is an effective and low-cost material to remove contaminants in water but its adsorption properties can be improved by impregnation of metals on the surface. In this study, a biochar derived from industrial tea waste was modified with Mg, Fe, Mn and Al salts to create different composites, which were tested for PO43− and Cd2+ sorption. The modifications created biochars with the (hydr)oxides of each metal and changed the characterization parameters and surface functionality. Cd2+ was efficiently removed by all the materials even at high Cd2+ loadings in the water (100 mg Cd2+ L−1), the biochar with Mg being the most efficient in Cd2+ removal. The biochar with Mg also achieved the best sorption of PO43−, sorbing up to 30% at 20 mg PO43− L−1. Tea waste biochar can be modified with metal salts to enhance inorganic pollutant removal from waters, especially with Mg salts.

Publisher

IWA Publishing

Subject

Filtration and Separation,Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3