Application of the multi-wavelength UV-LED/chlorine process to improve reverse osmosis membrane performance for reused water treatment in the steel industry

Author:

Liu Z.12,Xu M. Y.34,Yin H.1,Xie C. W.1,Liu Q.1,Liu H. T.1,Liang S. Y.12,Li J. K.1,Zhang T. Y.34,Li T.34ORCID,Hu H. Y.2,Xu B.34

Affiliation:

1. a MCC Capital Engineering and Research Incorporation Ltd, 7 Jian'an Street, Beijing Economical and Technological Development Area, Beijing 100176, China

2. b School of Environment, Tsinghua University, Beijing 100084, China

3. c State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Urban Water Supply, Water Saving and Water Environment Governance in the Yangtze River Delta of Ministry of Water Resources, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China

4. d Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China

Abstract

ABSTRACT Membrane fouling is a prominent issue that affects the stable and efficient operation of reverse osmosis (RO) in reused water treatment. In this study, a zero-discharge RO system was adopted to treat the ultrafiltration permeate from a steel plant with the combined multi-wavelength UV-LED/chlorine process, focusing on organic structure modification and membrane fouling control. The results showed that the UV-LED/chlorine process could not only efficiently remove the dissolved organic carbon and the total nitrogen of the RO influent but also alter the organic substances from large molecules to small ones. In addition, the longer wavelength of a 295 nm UV-LED/chlorine process exhibited a greater RO permeate flux of 158 LMH, as compared to the shorter wavelength of 255 nm with the flux of 152 LMH. Moreover, compared to the single-wavelength, the dual-wavelength UV-LED/chlorine process played a more significant role in RO filtration performance, which induced a looser and thinner foulant structure, resulting in an 8% larger permeate flux and recovery at 275 + 295 nm than at 295 nm. This study demonstrated that the combined UV-LED/chlorine process could effectively alleviate RO membrane fouling. Our findings can provide theoretical and technical support for the sustainable development of membrane-based reused water treatment in the steel industry.

Funder

National Natural Science Foundation of China

Shanghai Rising-Star Program

Science Fund for Creative Research Groups

Publisher

IWA Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3