Evaluation of the purification capacity of nine portable, small-scale water purification devices

Author:

Hörman A.12,Rimhanen-Finne R.2,Maunula L.3,von Bonsdorff C.-H.3,Rapala J.4,Lahti K.4,Hänninen M.-L.2

Affiliation:

1. The Finnish Defence Forces, Medical School, PO Box 5, 15701 Lahti, Finland

2. University of Helsinki, Faculty of Veterinary Medicine, Dept of Food and Environmental Hygiene, PO Box 57, 00014 Helsinki University, Finland

3. Haartman Institute, Department of Virology and HUCH Laboratory Diagnostics, Division of Virology, PO Box 21, 00014 Helsinki University, Finland

4. Finnish Environment Institute, Laboratory, PO Box 140, 00251 Helsinki, Finland

Abstract

A test was performed to evaluate the microbial and chemical purification capacity of nine portable, small-scale water purification filter devices with production capacity less than 100 L/h. The devices were tested for simultaneous removal capacity of bacteria (cultured Escherichia coli, Clostridium perfringens, Klebsiella pneumoniae and Enterobacter cloacae), enteric protozoans (formalin-stored Cryptosporidium parvum oocysts), viral markers (F-RNA bacteriophages) and microcystins produced by toxic cyanobacterial cultures. In general, the devices tested were able to remove bacterial contaminants by 3.6-6.9 log10 units from raw water. Those devices based only on filtration through pores 0.2-0.4 μm or larger failed in viral and chemical purification. Only one device, based on reverse osmosis, was capable of removing F-RNA phages at concentrations under the detection limit and microcystins by 2.5 log10. The present study emphasised the need for evaluation tests of water purification devices from the public safety and HACCP (Hazard Analysis and Critical Control Point) points of view. Simultaneous testing for various pathogenic/indicator microbes and microcystins was shown to be a useful and practical way to obtain essential data on actual purification capacity of commercial small-scale drinking-water filters.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3