Dynamic monitoring system for full-scale wastewater treatment plants

Author:

Yoo C.K.1,Lee J.-M.2,Lee I.-B.2,Vanrolleghem P.A.1

Affiliation:

1. BIOMATH, Ghent University, Coupure Links 653, B-9000 Gent, Belgium

2. Department of Chemical Engineering, Pohang University of Science and Technology, San 31 Hyoja-Dong, Pohang, 790-784, Korea

Abstract

This paper proposes a new process monitoring method using dynamic independent component analysis (ICA). ICA is a recently developed technique to extract the hidden factors that underlie sets of measurements, whereas principal component analysis (PCA) is a dimensionality reduction technique in terms of capturing the variance of the data. Its goal is to find a linear representation of non-Gaussian data so that the components are statistically independent. PCA aims at finding PCs that are uncorrelated and are linear combinations of the observed variables, while ICA is designed to separate the ICs that are independent and constitute the observed variables. The dynamic ICA monitoring method is applying ICA to the augmenting matrix with time-lagged variables. The dynamic monitoring method was applied to detect and monitor disturbances in a full-scale biological wastewater treatment (WWTP), which is characterized by a variety of dynamic and non-Gaussian characteristics. The dynamic ICA method showed more powerful monitoring performance on a WWTP application than the dynamic PCA method since it can extract source signals which are independent of time and cross-correlation of variables.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3