Removal of nitrogen and phosphorus from industrial wastewaters by phytoremediation using water hyacinth (Eichhornia crassipes (Mart.) Solms)

Author:

Jayaweera M.W.1,Kasturiarachchi J.C.1

Affiliation:

1. Department of Civil Engineering, University of Moratuwa, Sri Lanka (E-mail: jkasturiarachchi@yahoo.co.uk)

Abstract

This paper elucidates the phytoremediation potential of water hyacinth (Eichhornia crassipes [Mart.] Solms) for TN and TP rich industrial wastewaters determined for 15 weeks under different set-ups of 2-fold (56 TN mg/l and 15.4 TP mg/l), 1-fold, 1/2-fold, 1/4-fold and 1/8-fold and a control with no nutrients in duplicate. A mass balance was conducted to evaluate the phytoremediation efficiencies and to identify the key mechanisms of nutrient removal from the wastewaters. Our results manifested that water hyacinth is a promising candidate for a batch removal of TN and TP from wastewaters. 100% removal of both TN and TP was observed at the end of the 9th week in all the set-ups mainly due to assimilation and the period between 6Ð9 weeks became the optimum period after which complete harvesting is recommended. Plants having an age of 6 weeks are ideal to commence the free-floating wetland and 21 days hydraulic retention time (HRT) is recommended for optimum removal of TN and TP. Assimilation and denitrification were the key mechanisms of TN removal while assimilation and sorption became the prominent mechanisms in the removal of TP from wastewaters.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

Cited by 94 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Growth Dynamics and Nutrient Removal from Biogas Slurry Using Water Hyacinth;Sustainability;2024-05-24

2. Multi-Functional Water Hyacinth Reaper With Weight Management System;2024 2nd International Conference on Artificial Intelligence and Machine Learning Applications Theme: Healthcare and Internet of Things (AIMLA);2024-03-15

3. Antioxidant potential of phytomelatonin;Melatonin;2024

4. Microalgae-based green approach for effective chromium removal from tannery effluent: A review;Arabian Journal of Chemistry;2023-10

5. Assessing the Efficiency of Green Absorbent in Treating Nutrients and Heavy Metal in Wastewater;Sustainability;2023-08-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3