Denitrification with ɛ-caprolactam by acclimated mixed culture and by pure culture of bacteria isolated from polyacrylonitrile fibre manufactured wastewater treatment system

Author:

Lee C.M.1,Wang C.C.2

Affiliation:

1. Department of Environmental Engineering, National Chung Hsing University, Taichung 402, Chinese Taiwan (E-mail: cmlee@enve.ev.nchu.edu.tw)

2. Department of Environmental Engineering, National Chung Hsing University, Taichung 402, Chinese Taiwan. Present address: Department of Environmental Engineering, Hungkuang University, 34, Chung-Chie Rd. Shalu, Taichung 433, Chinese Taiwan (E-mail: chunchin@sunrise.hk.edu.tw)

Abstract

The aim of this study is to isolate denitrifying bacteria utilizing ɛ-caprolactam as the substrate, from a polyacrylonitrile fibre manufactured wastewater treatment system. The aim is also to compare the performance of PAN (polyacrylonitrile) mixed bacteria cultures acclimated to ɛ-caprolactam and isolated pure strain for treating different initial e-caprolactam concentrations from synthetic wastewater under anoxic conditions. The result showed that the PAN mixed bacteria cultures acclimated to e-caprolactam could utilize 1538.5 mg/l of ɛ-caprolactam as a substrate for denitrification. Sufficient time and about 2200 mg/l of nitrate were necessary for the complete ɛ-caprolactam removal. Paracoccus thiophilus was isolated from the polyacrylonitrile fibre manufactured wastewater treatment system and it could utilize 1722.5 mg/l of ɛ-caprolactam as a substrate for denitrification. About 3500 mg/l of nitrate was necessary for the complete removal of ɛ-caprolactam. When the initial ɛ-caprolactam concentration was below 784.3 mg/l, the removal efficiency of ɛ-caprolactam by Paracoccus thiophilus was better than that for the PAN mixed bacteria cultures. The growth of Paracoccus thiophilus was better. However, when the initial ɛ-caprolactam concentration was as high as 1445.8 mg/l, both the ɛ-caprolactam removal efficiency by Paracoccus thiophilus and Paracoccus thiophilus specific growth rate were similar to the PAN mixed bacteria cultures.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3