Removal of dissolved copper(II) and zinc(II) by aerobic granular sludge

Author:

Xu H.1,Tay J.-H.1,Foo S.-K.1,Yang S.-F.1,Liu Y.1

Affiliation:

1. Division of Environmental and Water Resources, School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798

Abstract

This study investigated the adsorption kinetics of dissolved copper(II) and zinc(II) by aerobic granular sludge. Two series of batch experiments were conducted at different initial copper(II), zinc(II) concentrations (Co) and initial granule concentrations (Xo). Results showed that the biosorption kinetics of individual copper(II) and zinc(II) by aerobic granules were closely related to Co and Xo. The maximum biosorption capacity of individual copper(II) and zinc(II) by aerobic granules was 246.1 mg g-1 and 180 mg g-1, respectively. In order to theoretically interpret the results obtained, two kinetic models previously developed for biosorption were employed and compared in this study. It was found that the model proposed by Liu et al. (2003) could fit the experimental data very well, but the second-order model failed to fit the data in some cases. It appears that aerobic granules would be potential biosorbent with high efficiency for the removal of dissolved copper(II) and zinc(II) from wastewater.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3