Treatment of taste and odor material by oxidation and adsorption

Author:

Jung S.-W.1,Baek K.-H.1,Yu M.-J.2

Affiliation:

1. Korea Water Resources Corporation, San 88-5 Sasong-dong Soojung-gu, Sungnam-city Kyungkido, Korea (E-mail: 92jsw@netian.com; ariybkh@hanmail.net)

2. University of Seoul, 90 Jeonnong-dong Dongdaemun-gu, Seoul, Korea (E-mail: myong@uoscc.uos.ac.kr)

Abstract

Massive blooms of blue-green algae in reservoirs produce the musty-earthy taste and odor, which are caused by compounds such as 2-MIB and geosmin. 2-MIB and geosmin are rarely removed by conventional water treatment. Their presence in the drinking water, even at low levels (ng/L), can be detected and it creates consumer complaints. So those concentrations have to be controlled as low as possible in the drinking water. The removals by oxidation (O3, Cl2, ClO2) and adsorption (PAC, filter/adsorber) were studied at laboratory and pilot plant (50 m3/d) to select suitable 2-MIB and geosmin treatment processes. The following conclusions were derived from the study. Both of the threshold odor levels for 2-MIB and geosmin appeared to be 30 ng/L as a consequence of a lab test. For any given PAC dosage in a jar-test, removal efficiencies of 2-MIB and geosmin were increased in proportion to PAC dosage and were independent of their initial concentration in raw water for the tested PAC dosages. In comparison of geosmin with 2-MIB, the adsorption efficiency of geosmin by PAC was superior to that of 2-MIB. The required PAC dosages to control below the threshold odor level were 30 mg /L for geosmin and 50 mg/L for 2-MIB at 100 ng/L of initial concentration. Removal efficiencies of odor materials by Cl2, ClO2, and O3 were very weak under the limited dosage (1.5 mg/L), however increased ozone dosage (3.8 mg O3/L) showed high removal efficiency (84.8% for 2-MIB) at contact time 6.4 minutes. According to the initial concentrations of 2-MIB and geosmin, their removal efficiencies by filter/adsorber differed from 25.7% to 88.4%. For all those, however, remaining concentrations of target materials in finished waters were maintained below 30 ng/L. The longer run-time given for the filter/adsorber, the higher the effluent concentration generated. So it is necessary that the run-time of the filter/adsorber be decreased, when 2-MIB or geosmin occurs in raw water.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3