Odour and ammonia removal from pig house exhaust air using a biotrickling filter

Author:

Melse R.W.1,Mol G.2

Affiliation:

1. Wageningen UR, Agrotechnology & Food Innovations, P.O. Box 17, 6700 AA, Wageningen, The Netherlands (E-mail: roland.melse@wur.nl)

2. Wageningen UR, Agrotechnology & Food Innovations. Current address: Alterra, P.O. Box 47, 6700 AA, Wageningen, The Netherlands (E-mail: gerben.mol@wur.nl)

Abstract

Odour from agricultural activities, such as the spreading of manure and the housing of animals, is increasingly being considered a nuisance in densely populated countries like the Netherlands. The objective of this research was to study the odour removal from pig house exhaust air by a biotrickling filter that had been implemented for ammonia abatement. At a regular pig production farm, the performance of a running full-scale biotrickling filter was studied for 72 days. Ammonia and odour removal efficiency were on average 79% and 49% respectively. Ammonia removal appeared to be based on an unintended accumulation of ammonium and nitrite in the system, instead of on production and discharge of nitrate. The odour removal efficiency showed a large variation that, for a major part, about 80%, could be attributed to actual changes in the performance of the biotrickling filter. These changes were probably caused by variations in the composition of the air that were not completely reflected by the olfactometrically measured odour concentration, as the many different components that make up the odour each have different removal characteristics. It seemed that the biotrickling filter was operated below its maximum absolute odour removal capacity [OUE/(m3 filter)/s], which means that the absolute odour removal will probably rise at increasing load. It was, however, not possible to distinguish between the influence of either the odour load or the odour concentration on the odour removal, because of a positive correlation between the odour concentration and the air flow. To increase the odour removal efficiency (%), the design of the filter probably needs to be optimised for both well and poorly water-soluble odour components.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3