Particle count and size alteration for membrane fouling reduction in non-conventional water filtration

Author:

Adin A.1

Affiliation:

1. Environmental Sciences Division, The Hebrew University of Jerusalem, Jerusalem, Israel 91904

Abstract

If coagulation is not completely successful and produces aggregates which are too small, fouling may increase. In some cases, a deep-bed filter could perhaps provide a solution. The paper examines these effects using experimental results for different waters. Activated sludge effluents, stormy seawater containing microalgae and spent filter backwash water (SFBW) were coagulated by alum or ferric chloride. Sand filtration tests were carried out. Tests were performed in a membrane filtration stirred cell, filtration pilot plant equipped with SDI analyzer (seawater) and pilot UF plant (SFBW). For activated sludge effluent, alum residual ratio curves of turbidity and total particle count (TPC) followed one another. With ferric chloride, low coagulant dosage showed negative turbidity removal. Contact granular filtration reduced membrane fouling intensity. Increasing the dose resulted in higher improvement in membrane flux. For seawater, a filter run period under storm conditions reached 35 hours with satisfactory filtrate quality. An iron chloride dose of 0.3 mg/l during normal conditions and 0.5 mg/l for stormy condition should be injected, mixed well before the filters, while maintaining 10 m/hr filtration rate and pH 6.8 value. For SFBW, alum flocculation pretreatment of SFBW was effective in reducing turbidity, TPC, viruses and protozoa. SFBW settling prior to flocculation did not enhance turbidity and TPC removal. The largest remaining particle fraction after alum flocculation was 3-10 μm in size, both Cryptosporidium and Giardia are found in this size range. Coagulation enhanced the removal of small size particles, a positive impact on reducing membrane fouling potential.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Protozoan Parasites;Food Microbiology;2019-05-29

2. A new mechanism for size separation of particles immersed in a fluid;International Journal of Engineering Systems Modelling and Simulation;2017

3. Protozoan Parasites;Food Microbiology;2014-04-30

4. Waste Management;Cryptosporidium and Cryptosporidiosis;2007-12-25

5. Waste Management;Cryptosporidium and Cryptosporidiosis, Second Edition;2007-12-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3