Efficacy of combined disinfection with a nitric oxide donor in controlling biofilm formation on the reverse osmosis water pathway for hemodialysis

Author:

Tange Yoshihiro1ORCID,Murata Ayane2,Yoshitake Shigenori3

Affiliation:

1. a Department of Advanced Medical Sciences, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasama-machi, Yufu City, Oita 879-5593, Japan

2. b Department of Medical Engineering, Kyushu University of Health and Welfare, 1714-1 Yoshinomachi, Nobeoka City, Miyazaki 882-8508, Japan

3. c Department of Clinical Psychology, Kyushu University of Health and Welfare, 1714-1 Yoshinomachi, Nobeoka City, Miyazaki 882-8508, Japan

Abstract

Abstract The water treatment system for hemodialysis (HD) is used to treat multiple patients requiring HD simultaneously. This system requires a large amount of purified reverse osmosis (RO) water. However, a major drawback of this method is the formation of biofilms in dialysate pathways. The purpose of this study was to investigate the efficacy of NOC 18, a nitric oxide (NO) donor that can be used at neutral pH, in disinfecting the RO water pathway. Silicone tubes were obtained from the terminal sites of two different HD units. The biofilm coverage and mean biofilm thickness on the tube lumen were evaluated by scanning electron microscopy. The results demonstrated that treatment with NOC 18 alone and in conjunction with sodium hypochlorite reduced biofilm coverage and mean biofilm thickness. Thus, NO donor is a potential disinfectant that enhances bacterial dispersion from biofilms formed on the silicone tube lumen and reduces biofilm coverage and thickness on the RO water pathway at neutral pH. Furthermore, combined disinfection with the NO donor and sodium hypochlorite might enhance biofilmremoval efficacy in clinical practice.

Publisher

IWA Publishing

Subject

Infectious Diseases,Microbiology (medical),Public Health, Environmental and Occupational Health,Waste Management and Disposal,Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3