Chemical risks in drinking water of inhabitants in the basin of the Tonle Sap Great Lake

Author:

Phan Kongkea12ORCID,Hoeng Sophanith1,Phin Samnang1,The Noreaksatya1,Sriv Tharith3ORCID,Sao Vibol3,Chey Chan Oeurn3

Affiliation:

1. a Food Chemistry Lab, Faculty of Science and Technology, International University, Phnom Penh 120801, Cambodia

2. b Water Innovation Lab, Kampong Cham 030501, Cambodia

3. c Graduated School of Science, Royal University of Phnom Penh, Federation of Russia Blvd, Tuol Kork, Phnom Penh, Cambodia

Abstract

Abstract The present study aimed to assess chemical risks in the drinking water of inhabitants in the basin of the Tonle Sap Great Lake. Water samples from tube wells (n = 52), dug wells (n = 13), stored rain water (n = 39), ponds/lakes (n = 19), canals/rivers (n = 24), and household pipe water (n = 45) were collected and analyzed for physicochemical properties, as well as microbial and chemical qualities using standard methods. Analytical results revealed that 42.1% of tube wells had As > 10 μg L−1 while 8.3% had Cr > 0.05 mg L−1. Concurrently, 55.2 and 11.8% of tube wells had Cd > 3.00 μg L–1 and Pb > 10 μg L−1, respectively. Moreover, 35.0% of pipe water had Fe > 0.3 mg L−1, whereas 85.7% of tube wells and 69.2% of dug wells had Mn > 0.1 mg L−1. All water sources including pipe water could pose risks of non-carcinogenic effects of chemical mixtures to all exposure groups through their drinking water pathway. Children were at a higher risk of chemical mixtures in their drinking water than adults. This study suggests that advanced treatment technologies should be applied to the current water treatment plants to provide inhabitants with safe drinking water.

Funder

Ministry of Education, Youth and Sport, Cambodia

Publisher

IWA Publishing

Subject

Infectious Diseases,Microbiology (medical),Public Health, Environmental and Occupational Health,Waste Management and Disposal,Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3