Affiliation:
1. 1 Institute for Water Research (IWR), Rhodes University, Old Geology Building (off Artillery Road), P.O. Box 94, Grahamstown 6140, South Africa
Abstract
Abstract
Campylobacter species are among the aetiological agents responsible for 400–500 million human diarrhoea cases per annum. The risk of dissemination of antibiotic-resistant Campylobacter species between humans, animals, and the environment is anticipated, given its transmissibility through these sources. The objective of this paper is to present a situation analysis that reports the current patterns and determinants of Campylobacter antibiotic resistance in South Africa. This review applies the One Health (OH) Approach to systematically review and collate the current antibiotic resistance status among Campylobacter spp. in South Africa. The highest level of resistance of Campylobacter in humans is to azithromycin (69.7%), whereas the lowest level of resistance of Campylobacter is to gatifloxacin (8.3%). In animals, high resistance to common antibiotics erythromycin (95.06%), clindamycin (95.68%), doxycycline (87.65%), erythromycin (90%), tetracycline (84.3%), streptomycin (88%), and ampicillin (73%) while 100% resistance of Campylobacter from water samples to tetracycline, imipenem, is recorded. Furthermore, resistance to clarithromycin (95%), azithromycin (92%), clindamycin (84.2%), doxycycline (80%), and ciprofloxacin (77.8%) is reported among Campylobacter spp. from water samples. The genetic similarity results suggest the movement of antibiotic-resistant Campylobacter spp. between humans and the environment. More research on antibiotic resistance among Campylobacter from other sources, outside clinical isolates, is recommended.
Funder
Water Research Commission
Subject
Infectious Diseases,Microbiology (medical),Public Health, Environmental and Occupational Health,Waste Management and Disposal,Water Science and Technology
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. The Alternatives of Antibiotics in Poultry Production for Reducing Antimicrobial Resistance;World's Veterinary Journal;2024-06-25
2. Phytochemical analysis, GC–MS profile and determination of antibacterial, antifungal, anti-inflammatory, antioxidant activities of peel and seeds extracts (chloroform and ethyl acetate) of Tamarindus indica L;Saudi Journal of Biological Sciences;2024-01
3. The Phytochemical Content of Diospyros Rumphii Leaf Used for Nesting by Leafcutter Bees in Sulawesi and Their Potential as Antiviral, Antibacterial, and Antifungal;2024
4. Campylobacter in Africa – A specific viewpoint;European Journal of Microbiology and Immunology;2023-12-21
5. Crisis averted: a world united against the menace of multiple drug-resistant superbugs -pioneering anti-AMR vaccines, RNA interference, nanomedicine, CRISPR-based antimicrobials, bacteriophage therapies, and clinical artificial intelligence strategies to safeguard global antimicrobial arsenal;Frontiers in Microbiology;2023-11-30