Stochastic simulation of daily streamflow sequences using a hidden Markov model

Author:

Pender Douglas1,Patidar Sandhya1,Pender Gareth1,Haynes Heather1

Affiliation:

1. Institute for Infrastructure and Environment, Heriot-Watt University, Edinburgh EH14 4AS, UK

Abstract

Estimation of daily streamflow time series is of paramount importance for the design and implementation of river engineering and management projects (e.g., restoration, sediment-transport modelling, hydropower). Traditionally, indirect approaches combining stochastic simulation of rainfall with hydrological rainfall–runoff models are used. However, these are limited by uncertainties in model calibration and computational expense. Thus, this paper demonstrates an alternative, direct approach, for stochastic modelling of daily streamflow data, specifically seeking to address well-known deficiencies in model capability to capture extreme flow events in the simulated time series. Combinations of a hidden Markov model (HMM) with the generalised extreme value (HMM-GEV) and generalised Pareto (HMM-GP) distributions were tested for four hydrologically contrasting catchments in the UK (Rivers Dee, Falloch, Caldew and Lud), with results compared to recorded flow data and estimations obtained from a simpler autoregressive-moving-average (ARMA) model. Results show that the HMM-GP method is superior in performance over alternative approaches (relative mean absolute differences (RMAD) of <2% across all catchments), appropriately captures extreme events and is generically applicable across a range of hydrological regimes. In contrast, the ARMA model was unable to capture the flow regime successfully (average RMAD of 14% across all catchments).

Publisher

IWA Publishing

Subject

Water Science and Technology

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Long-Term Stochastic Modeling of Monthly Streamflow in River Nile;Sustainability;2023-01-24

2. Markov Chains: Addition;Encyclopedia of Mathematical Geosciences;2023

3. Hybrid modified continuous time Markov chain model for daily streamflow generation;Journal of Hydrology;2022-09

4. Markov Chains: Addition;Encyclopedia of Mathematical Geosciences;2022

5. Markov Chains: Addition;Encyclopedia of Mathematical Geosciences;2021-12-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3