Application of Multi-stable Isotope (13C, 15N, 34S, 37Cl) Assays to Assess Spatial Separation of Fish (Longnose Sucker Catostomus catostomus) in an Area Receiving Complex Effluents

Author:

Dubé Monique G.1,Benoy Glenn A.2,Blenkinsopp Sandra3,Ferone Jenny-Marie3,Brua Robert B.2,Wassenaar Leonard I.2

Affiliation:

1. University of Saskatchewan, Toxicology Centre, 44 Campus Drive, Saskatoon, Saskatchewan S7N 5B3

2. National Water Research Institute, Environment Canada, 11 Innovation Boulevard, Saskatoon, Saskatchewan S7N 3H5

3. Prairie and Northern Region, Environment Canada, 4999 98th Avenue, Edmonton, Alberta T6B 2X3

Abstract

Abstract Incorporation of stable isotope analysis (SIA) into routine environmental effects monitoring programs of receiving waters may enable determination of the spatial extent of biotic exposure and discrimination among sources of complex effluents. To evaluate this hypothesis, longnose sucker (Catostomus catostomus) were collected from four sites along the Athabasca River, Alberta (upstream reference site, two sites downstream of effluents from two pulp and paper mills, and a site downstream of effluent from a municipal sewage treatment plant). Stable isotopes of carbon, nitrogen, sulfur and chlorine were analyzed in bone, gonad, liver and white muscle tissues of the fish. In general, most sites and tissues differed according to δ13C, δ15N and δ34S values. Also, an interaction between site and tissue was observed for δ15N values. A better insight into the usefulness of stable isotopes was obtained through the use of multivariate discriminant function analysis. δ15N and δ34S signatures of gonad and liver tissues of males were most effective at classifying fish according to site (~70% for both tissues). For all tissues except bone, fish from the upstream reference site were most separable from all others, especially females. δ37Cl values for female gonads and male livers were related to sites downstream of the pulp and paper mills. Future research should routinely include SIA of fish tissues, but also of effluents, receiving waters and food web components to better resolve links between specific effluents and fish exposure.

Publisher

IWA Publishing

Subject

Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3