The Effect of Nozzle Type on Air Entrainment by Plunging Water Jets

Author:

Bagatur Tamer1,Baylar Ahmet1,Sekerdag Nusret2

Affiliation:

1. Firat University, Department of Civil Engineering, Elazig, Turkey

2. Firat University, Department of Environmental Engineering, Elazig, Turkey

Abstract

Abstract In this study, for the plunging water jet aeration system using various inclined nozzle types, bubble penetration depth, air entrainment rate, water jet expansion, effect of water jet circumference at impact point, oxygen transfer coefficient and oxygen transfer efficiency which changed depending on the water jet velocity, were researched in an air-water system. Numerous studies were conducted with circular nozzles. The present study describes new experiments performed with different nozzle types. Three types of nozzles were examined, i.e., those with circular, ellipse and rectangle duct with rounded ends. Experimental results showed that water jets produced with ellipse and rectangle duct with rounded ends nozzles have very different flow characteristics, entrainment patterns on free water jet surface, and submerged water jet region within the receiving tank. Higher air entrainment rate and oxygen transfer efficiency was observed in the rectangle duct with rounded ends nozzle due to water jet expansion. Bubble penetration depth, however, is lower for the rectangle duct with rounded ends nozzle than for the other nozzles. The ellipse nozzle provided the highest bubble penetration depth. These results showed that it is appropriate to use ellipse nozzle in aeration of deep pool and rectangle duct with rounded ends nozzle in the applications where high bubble concentration is desirable.

Publisher

IWA Publishing

Subject

Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3