Evaluation of the Root Zone Water Quality Model (RZWQM) for Southern Ontario: Part I. Sensitivity Analysis, Calibration, and Validation

Author:

Ahmed Imran1,Rudra Ramesh1,McKague Kevin2,Gharabaghi Bahram1,Ogilvie John1

Affiliation:

1. School of Engineering, University of Guelph, Guelph, Ontario N1G 2W1

2. Environmental Policy and Programs Branch, Ontario Ministry of Agriculture, Food, and Rural Affairs, Woodstock, Ontario N4S 7Z5

Abstract

Abstract This study focuses on the performance of the Root Zone Water Quality Model (RZWQM) for corn production in southern Ontario. The model was used to simulate the amount of subsurface tile drainage, residual soil nitrate-nitrogen (NO3-N), NO3-N in subsurface drainage water, and crop yield. A precalibration sensitivity analysis of the model was conducted for several key parameters using field data collected at the study site. The RZWQM's hydrology component was most sensitive to the Brooks and Corey fitting parameters and saturated hydraulic conductivity (Ks), while the tile drain flow and the water table depth were sensitive to the Brooks and Corey fitting parameters of bubbling pressure (ψbp) and pore-size-distribution index (λ). The fraction of dead-end pores had relatively little effect on tile drain N loss. The crop yield is most affected by N uptake, age, and evapotranspiration rate. RZWQM simulated evapotranspiration was within the range (568 ± 55 mm) of the observed evapotranspiration. The model simulated corn yield very well (-0.1% difference) at the calibration site; however, it underestimated yield (-14.1%) at the validation site. Overall, the RZWQM simulated tile drain flow, NO3-N loss to tile drainage water, and crop yield with reasonable accuracy, but tended to underestimate the amount of soil NO3-N (mean deviation, -0.971). The inability of the model to handle the spatial and temporal variability of the soil may have affected its prediction accuracy. The model also needs improvement in simulating early spring snowmelt hydrology.

Publisher

IWA Publishing

Subject

Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3