Affiliation:
1. Department of Process Engineering and Applied Science, Dalhousie University, 1360 Barrington Street, P.O. Box 1000, Halifax, NS B3J 1Z1
2. Department of Engineering, Nova Scotia Agricultural College, Truro, NS
3. Present address: Department of Land Resource Science, University of Guelph, Guelph, ON
4. Department of Civil and Resource Engineering, Dalhousie University, Halifax, NS
Abstract
Abstract
Agricultural waste must be managed effectively to protect surface and groundwater resources, as well as human health. Constructed wetlands can provide a low-cost environmentally acceptable method for the treatment of agricultural wastewater. An ionic tracer (Lithium chloride [LiCl]) and a biotracer (a naladixic acid-resistant strain of Escherichia coli) were injected into six pilot-scale constructed wetlands treating dairy wastewater: three surface-flow (SF) wetlands and three subsurfaceflow (SSF) wetlands. Each wetland was 3.9-m long and 1.7-m wide. Residence time distribution functions were calculated for each wetland to investigate the hydraulic behaviour of each system during winter and summer conditions. During the summer study, the mean residence times for SF wetlands 2, 4, and 6 were 12, 16, and 14 days, respectively, while the mean residence time for SSF wetlands 1, 3, and 5 were 23, 18, and 22 days, respectively. The longitudinal dispersion coefficients were in the order of 10-6 m2 s-1 for each wetland during the summer and winter. The mean residence time for SF wetlands 2, 4, and 6 during the winter study were 8, 10, and 10 days, respectively, while the mean residence time for SSF wetlands 1, 3, and 5 were 8, 9, and 10 days, respectively. E. coli effluent peaks often occurred prior to Li peaks, suggesting that bacteria may be motile within the wetland environment. This study suggests that dispersion is an important mass transport process in both SF and SSF wetlands. Long-term operation of SF and SSF treatment wetlands may cause reduced retention times and treatment efficiency due to organic matter accumulation and channelling. Cold winter temperatures may also increase the survival of bacteria within treatment wetland systems, decreasing the wetland's ability to reduce bacteria concentrations during the winter months.
Subject
Water Science and Technology
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献