Evaluation of water management effects on potato yield and water productivity in northeast Iran using the SWAP model

Author:

Mustafavi Babukani Mehsa1,Hashminejhad Youssef2,Armin Mohammad1ORCID,Maravi Hamid1,Noferest Kourosh Shojaei3

Affiliation:

1. a Department of Agronomy and Plant Breeding, Sabzevar Branch, Islamic Azad University, Sabzevar, Iran

2. b Soil and Water Research Department, Khorasan Razavi Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Mashhad, Iran

3. c Agronomic and Horticulture Crops Research Department, Khorasan Razavi Agricultural and Natural Resources Research and Education Center, AREEO, Mashhad, Iran

Abstract

ABSTRACT The agro-hydrological SWAP model was employed for simulation of evapotranspiration, yield, and water productivity of potato under six irrigation scenarios (100, 90, 80, 70, 60, and 50% potato water requirement (WR)) in Fariman, Ghoochan, and Golmakan in the northeast Iran. The results showed that the SWAP model well-simulated potato yield and water productivity. The model slightly overestimates the potato yield and underestimates the water productivity. The results revealed that irrigation scheduling is an important factor effecting on evapotranspiration, yield, and water productivity of potatoes. By decreasing irrigation water to 50% WR, potato evapotranspiration and yield decreased in all three study areas. However, potato water productivity increased in Fariman and Golmakan and decreased in Ghoochan, as irrigation volume decreased to 50% WR. In Fariman and Golmakan, irrigation at the rate of 80% WR led to the best irrigation management to have maximum water productivity (2.96 and 2.48 kg m−3, respectively) and acceptable potato yield (21,376.2 and 10,998.7 kg ha−1). In Ghoochan, by adopting the irrigation scenario at the level of 90% WR, the potato yield decreased by approximately 7.6% compared to the full irrigation conditions. However, the highest amount of water productivity (2.27 kg m−3) was achieved.

Publisher

IWA Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3