Calibration of intermittent water supply systems hydraulic models under data scarcity

Author:

Leinæs Ane1ORCID,Simukonda Kondwani2ORCID,Farmani Raziyeh1

Affiliation:

1. a Center for Water Systems, University of Exeter, Exeter, UK

2. b Department of Agricultural Engineering, University of Zambia, Lusaka, Zambia

Abstract

ABSTRACT Intermittent water supply systems (IWSSs) are unable to meet customer demands due to water scarcity from the sources or due to economic or/and technical scarcity. Conversion to continuous water supply as a means of tackling IWSSs’ inherent problems of inequitable water distribution, limited water supply hours, high non-revenue water, system operation and maintenance costs, and poor water quality is essential for sustainable water supply. Modelling and optimisation techniques have been used to aid the conversion process, optimisation of the operation of these systems, and guiding leakage reduction actions. However, modelling IWSSs have several challenges. These include the lack of accepted existing modelling techniques that include leakage modelling and the lack of comprehensive methodology for calibrating IWSS hydraulic models under limited calibration data. This study proposes a methodology for calibrating IWSS hydraulic models that include leakage modelling. The proposed methodology involves distinct steps to mitigate the problem of data scarcity, it eliminates the trial-and-error procedure of determining the leakage emitters' coefficients by using optimisation and it presents an approach for estimating the lower and upper bounds of the emitters' coefficients. The methodology was applied to a case study in Zambia. The calibration procedure gave accurate results given the limitation of data.

Funder

Commonwealth Foundation

Publisher

IWA Publishing

Reference64 articles.

1. Water Distribution Network's Modeling and Calibration. A Case Study based on Scarce Inventory Data

2. Improving equity in intermittent water supply systems

3. Hydraulic City

4. Parametric analysis for genetic algorithms handling parameters

5. Battermann A. & Macke S. 2001 A Strategy to Reduce Technical Water Losses for Intermittent Water Supply Systems. MSc Thesis. Available from: http://www.sdteffen.de/diplom/thesis.pdf (accessed 19 January 2023).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3