Improving the performance of a condensation water production system through support vector machine modeling and genetic algorithm optimization

Author:

Hajinajaf Shayan1,Jolandan Shaban Ghavami1,Masoudi Hassan1,Rohani Abbas2ORCID

Affiliation:

1. a Department of Biosystems Engineering, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Iran

2. b Department of Biosystems Engineering, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran

Abstract

Abstract Water scarcity is recognized as a critical global concern and one viable solution involves extracting water from atmospheric humidity by leveraging subterranean coldness. This study meticulously evaluates the operational efficacy of a water production system by examining four pivotal factors: buried pipe length (TL), air flow rate (AFR), air temperature (AT), and air humidity (AH). A positive correlation between these variables and water vapor production is established, with AT exerting the most pronounced influence. Significantly, the analysis of variance reveals the main and interactive effects of the variables, except for TL × AFR, at a 5% significance level. To enhance understanding of the intricate interplay among these factors, a proficient least squares support vector machines model is devised, employing a radial basis function kernel. This model demonstrates an impressive 98% concurrence between projected and empirical data, with a minimal error of 0.66 mL and 5.99%. An in-depth sensitivity analysis underscores the differential impact of AT, AH, TL, and AFR on water vapor (WV) prediction. Optimal values of 3.98 m, 6.89 m3/h, 46.30 °C, and 86.62% for TL, AFR, AT, and AH, respectively, are obtained through subsequent optimization of independent variables using genetic algorithms, resulting in a notable water production of 23.61 mL.

Funder

Shahid Chamran University of Ahvaz

Publisher

IWA Publishing

Reference45 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3