Discharge formula based on brink depth over sharp-crested weirs

Author:

Alomari Nashwan K.1,Khaleel Moayad S.1,Mohammed Ahmed Y.1ORCID,Juma Inaam A.1

Affiliation:

1. 1 Dams and Water Resources Department, College of Engineering, University of Mosul, Mosul, Iraq

Abstract

Abstract Weirs are among the most essential hydraulic structures for measuring water discharge in open channels. The prediction of water discharge over weirs should be as precise and straightforward measured as feasible. The experimental investigation of flow prediction over varied heights of a conventional rectangular sharp-crested weir was conducted in the present work. The investigation evaluated five ratios of weir height to length, P/b, of 0.33, 0.4, 0.47, 0.53, and 0.6, different water discharges, Q, of up to 17.25 L/s, and different bed slopes, S, between 0.001 and 0.01. The experiment's findings reveal that a change in the bed slope has no significant effect on the brink depth, hb, for a constant water discharge. However, it influences the head over the weir, h, which is usually measured upstream of the weir location and used to predict water discharge. A simple, accurate formula was developed for predicting water discharge over rectangular sharp-crested weirs depending on the brink depth with mean absolute percent error (MAPE) and root-mean-square error (RMSE) of 1.714% and 0.229, respectively. In addition to having a simple form, the developed formula performs well, is unaffected by the bed slope, and applies to a wide range of h/P values, from 0.158 to 0.945.

Publisher

IWA Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3