An ordered multi-objective fuzzy stochastic approach to sustainable water resources management: a case study from Taiyuan City, China

Author:

Wu Wenyu1ORCID,Zhao Xuehua1ORCID,Zhang Xueyou1,Wu Xixi1,Zhao Yuhang1,Guo Qiucen1,Yao Liushan1,Liu Xin1

Affiliation:

1. 1 College of Water Resources Science and Engineering, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China

Abstract

Abstract The uncertainty of socioeconomic development and climate change poses challenges to the sustainable management of water resources in Taiyuan, China. The study proposes a type-2 fuzzy chance-constrained ordered multi-objective fractional programming (T2FCC-ORMOFP) model to address the allocation of water under uncertainties. The model incorporates type-2 fuzzy programming and chance-constrained programming into an overall framework to handle multiple uncertainties under multi-level and multi-objective conflicts, while using fractional programming to reflect the marginal benefits of the system. It prioritizes the principles of optimal, fair, and stable distribution by the upper-level governing authorities, while considering the social and economic environmental benefits of lower-level decision-making. The optimal water allocation scenarios were obtained under different hydrological guarantee rates, violation levels of water supply constraints, and net economic benefits of type-2 fuzzy numbers for 2030. Additionally, groundwater is replaced by reclaimed water in varying proportions for flexible water supply. The results show that the water demand in Taiyuan cannot be ignored, and the risk of water shortage is more sensitive for the agricultural and industrial sectors. The recycled water substitution strategy can optimize the water supply structure and improve social and economic benefits (9–12%). Also T2FCC-ORMOFP can improve overall efficiency (20%) compared with a single-level model.

Funder

the National Key Research and Development Program of China

the National Natural Science Foundation of China

the Special Fund for Science and Technology Innovation Teams of Shanxi Province

the Natural Science Foundation of Shanxi Province, China

Publisher

IWA Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3