Experimental and simulation analysis of flow patterns and energy dissipation through sluice gates in a U-shaped channel

Author:

Wang Jing1,Li Songping2,Zhang Yisheng1ORCID

Affiliation:

1. a School of Water Conservancy and Transportation, Zhengzhou University, Zhengzhou 450001, China

2. b Henan Provincial Water Conservancy Technology Application Center, Zhengzhou 450003, China

Abstract

ABSTRACT The vertical U-shaped gate holds significant potential for widespread application in flow control within U-shaped channels, as it eliminates the necessity for constructing auxiliary hydraulic structures. The boundary conditions associated with the U-shaped gate are complex, offering distinctive hydraulic features. In this study, the hydraulic characteristics of a vertical U-shaped gate have been investigated by model test and numerical simulation on a U-shaped channel under different flow rates, and the hydraulic evolution process was analyzed. The results show that the minimum relative error of discharges is 0.4%, so the numerical simulation can accurately describe the hydraulic performance of the vertical U-shaped gate. The flow generates a contracted cross-section and presents rhomboid water waves with a ‘hump-like’ convex structure after passing the U-shaped gate, accompanied by large kinetic energy dissipation. The gate opening exerts notable influence on the free surface width. The width of the first contraction section increased by 53.88% as the gate opening ranged from 2.5 to 5.5 cm with a flow rate of 8.24 L/s. The power function relationship of upstream flow Froude number, the width of free surface and energy loss is established. The results are helpful for engineering designing and operation management of a U-shaped gate.

Funder

The Scientific and Technological Research Program of Henan Province

Publisher

IWA Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3