Enhanced water production in hemispherical solar stills via solar collector and thermal storage integration: experimental validation

Author:

Benabdelaziz Kamel Ferhat12,Chaker Abla1,Kerfah Rabah3ORCID

Affiliation:

1. a Department of Physics, Laboratory LPE, Brothers Mentouri University, Constantine, Algeria

2. b Development Unit of Solar Equipment, EPST/Renewable Energy Development, Tipaza, Algeria

3. c Department of Technology, Industrialist Fluid Measurement and Applications Laboratory, Djillali Bounaama Khemis-Miliana University, Khemis Miliana, Algeria

Abstract

ABSTRACT In arid regions that face water scarcity, solar distillation offers hope by meeting the increasing need for clean drinking water. This study investigates the integration of a hot water storage system, heated by a flat plate solar collector, into a hemispherical solar still. Placing the storage tank below the still's absorber enhances heat input and efficiently stores excess daytime thermal energy. Conducted in Bouismail from December 2022 to October 2023, the study yielded significant results: the modified solar still outperformed the conventional one, with production increases of 157% in winter and 207% in summer. Moreover, the modified still demonstrated remarkable efficiency improvement in summer, reaching 37.42% compared to 20.38% for the conventional still. The orientation of the fins within the storage tank, with respect to the hot water entrance orifice, significantly impacted water production, with alterations of the angle resulting in decreases of up to 25%. Increasing saltwater depth led to reduced distilled water output, with declines of up to 37.08% for the modified still. Economic analysis showed a slightly higher cost per liter of water produced by the modified still ($0.1897) compared to the simple one ($0.1446).

Publisher

IWA Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3