A multiscale time-space approach to analyze and categorize the precipitation fluctuation based on the wavelet transform and information theory concept

Author:

Roushangar Kiyoumars1,Nourani Vahid1,Alizadeh Farhad1

Affiliation:

1. Department of Water Resources Engineering, Faculty of Civil Engineering, University of Tabriz, 29 Bahman Ave., Tabriz, Iran

Abstract

AbstractThe present study proposed a time-space framework using discrete wavelet transform-based multiscale entropy (DWE) approach to analyze and spatially categorize the precipitation variation in Iran. To this end, historical monthly precipitation time series during 1960–2010 from 31 rain gauges were used in this study. First, wavelet-based de-noising approach was applied to diminish the effect of noise in precipitation time series which may affect the entropy values. Next, Daubechies (db) mother wavelets (db5–db10) were used to decompose the precipitation time series. Subsequently, entropy concept was applied to the sub-series to measure the uncertainty and disorderliness at multiple scales. According to the pattern of entropy across scales, each cluster was assigned an entropy signature that provided an estimation of the entropy pattern of precipitation in each cluster. Spatial categorization of rain gauges was performed using DWE values as input data to k-means and self-organizing map (SOM) clustering techniques. According to evaluation criteria, it was proved that k-means with clustering number equal to 5 with Silhouette coefficient=0.33, Davis–Bouldin=1.18 and Dunn index=1.52 performed better in determining homogenous areas. Finally, investigating spatial structure of precipitation variation revealed that the DWE had a decreasing and increasing relationship with longitude and latitude, respectively, in Iran.

Publisher

IWA Publishing

Subject

Water Science and Technology

Reference71 articles.

1. Information theory and predictability for low-frequency variability;Journal of Atmospheric Research,2005

2. Development of a new method of wavelet aided trend detection and estimation;Hydrological Processes,2009

3. Hydrologic regionalization using wavelet-based multiscale entropy method;Journal of Hydrology,2016

4. Using wavelet transforms to estimate surface temperature trends and dominant periodicities in Iran based on gridded reanalysis data;Atmospheric Research,2014

5. Investigation of temporal and spatial climate variability and aridity of Iran;Theoretical and Applied Climatology,2013

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3