Assessing the predictability of MLR models for long-term streamflow using lagged climate indices as predictors: a case study of NSW (Australia)

Author:

Esha Rijwana I.1,Imteaz Monzur A.1

Affiliation:

1. Department of Civil and Construction Engineering, Swinburne University of Technology, Melbourne, VIC 3122, Australia

Abstract

Abstract The current study aims to assess the potential of statistical multiple linear regression (MLR) techniques to develop long-term streamflow forecast models for New South Wales (NSW). While most of the past studies were concentrated on revealing the relationship between streamflow and single concurrent or lagged climate indices, this study intends to explore the combined impact of large-scale climate drivers. Considering their influences on the streamflow of NSW, several major climate drivers – IPO (Inter Decadal Pacific Oscillation)/PDO (Pacific Decadal Oscillation), IOD (Indian Ocean Dipole) and ENSO (El Niño-Southern Oscillation) are selected. Single correlation analysis is exploited as the basis for selecting different combinations of input variables for developing MLR models to examine the extent of the combined impacts of the selected climate drivers on forecasting spring streamflow several months ahead. The developed models with all the possible combinations show significantly good results for all selected 12 stations in terms of Pearson correlation (r), root mean square error (RMSE), mean absolute error (MAE) and Willmott index of agreement (d). For each region, the best model with lower errors provides statistically significant maximum correlation which ranges from 0.51 to 0.65.

Publisher

IWA Publishing

Subject

Water Science and Technology

Reference74 articles.

1. Using lagged and forecast climate indices with artificial intelligence to predict monthly rainfall in the Brisbane Catchment, Queensland, Australia;International Journal of Sustainable Development and Planning,2015

2. El Niño Modoki and its possible teleconnection;Journal of Geophysical Research: Oceans,2007

3. The impacts of drought on freshwater ecosystems: an Australian perspective;Hydrobiologia,2008

4. Teleconnection pathways of ENSO and the IOD and the mechanisms for impacts on Australian rainfall;Journal of Climate,2011

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3