Evaluating remotely sensed monthly evapotranspiration against water balance estimates at basin scale in the Tibetan Plateau

Author:

Liu Wenbin1

Affiliation:

1. Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China

Abstract

Abstract Global evapotranspiration (ET) products, as compensation for eddy-covariance observations, provide useful data sources for understanding terrestrial water-energy budgets at different scales, especially for data-sparse regions. Here, we evaluated three remotely sensed ET products against water balance-based reference ET () in 16 river basins across the Tibetan Plateau (TP) on a monthly time scale from 1983 to 2011. The results indicated that ET_GLEAM performed the best overall across the 16 TP river basins in terms of the multi-year average and the interannual variability of monthly , followed by ET_ZHANG and ET_CSIRO. The multi-year means of monthly were better estimated overall by the three remotely sensed ET products rather than their interannual variability. However, the performances of the three ET datasets varied among different TP basins based on various evaluation criteria. The seasonal cycle of was better captured by ET_GLEAM, ET_ZHANG and ET_CSIRO in the Yalong, Yangtze and Salween Basins and the upper Yellow River Basins rather than that in the Yulongkashi, Bayin and Brahmaputra River Basins. Overall, the ET_GLEAM performed relatively better than other datasets. The evaluation results will provide important references for us to select suitable datasets and to apply them in basin-scale water-energy budget studies in data-sparse regions.

Publisher

IWA Publishing

Subject

Water Science and Technology

Reference44 articles.

1. Hydroclimatic trends and possible climatic warming in the Canadian prairies;Water Resources Research,1998

2. On the use of a water balance to evaluate inter-annual terrestrial ET variability;Journal of Hydrometeorology,2015

3. Techniques of trend analysis for monthly water quality data;Water Resources Research,1982

4. Temperature changes in Central Asia from 1979–2011 based on multiple datasets;Journal of Climate,2014

5. Evaluation of reanalysis, spatially interpolated and satellite remotely sensed precipitation data sets in Central Asia;Journal of Geophysical Research: Atmosphere,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3