Inter-comparison between retrospective ensemble streamflow forecasts using meteorological inputs from ECMWF and NOAA/ESRL in the Hudson River sub-basins during Hurricane Irene (2011)

Author:

Saleh F.1,Ramaswamy V.2,Georgas N.1,Blumberg A. F.1,Pullen J.1

Affiliation:

1. Jupiter, New York, USA

2. Department of Civil, Environmental and Ocean Engineering, Stevens Institute of Technology, Hoboken, NJ, USA

Abstract

Abstract The objective of this work was to evaluate the benefits of using multi-model meteorological ensembles in representing the uncertainty of hydrologic forecasts. An inter-comparison experiment was performed using meteorological inputs from different models corresponding to Hurricane Irene (2011), over three sub-basins of the Hudson River basin. The ensemble-based precipitation inputs were used as forcing in a hydrological model to retrospectively forecast hourly streamflow, with a 96-hour lead time. The inputs consisted of 73 ensemble members, namely one high-resolution ECMWF deterministic member, 51 ECMWF members and 21 NOAA/ESRL (GEFS Reforecasts v2) members. The precipitation inputs were resampled to a common grid using the bilinear resampling method that was selected upon analysing different resampling methods. The results show the advantages of forcing hydrologic forecasting systems with multi-model ensemble forecasts over using deterministic and single model ensemble forecasts. The work showed that using the median of all 73 ensemble streamflow forecasts relatively improved the Nash–Sutcliffe Efficiency and lowered the biases across the examined sub-basins, compared with using the ensemble median from an individual model. This research contributes to the growing literature that demonstrates the promising capabilities of multi-model systems to better describe the uncertainty in streamflow predictions.

Publisher

IWA Publishing

Subject

Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3