Hydraulic conductivity estimation via the AI-based numerical model optimization using the harmony search algorithm

Author:

Gorgij Alireza Docheshmeh1,Kisi Ozgur2,Moayeri Mohammad Mehdi3,Moghaddam Asghar Asghari1

Affiliation:

1. Department of Earth Science, Faculty of Natural Science, University of Tabriz, Iran

2. School of Natural Sciences and Engineering, Ilia State University, Tbilisi, Georgia

3. Department of Water Science, Faculty of Agriculture, University of Tabriz, Iran

Abstract

Abstract Groundwater as a vital resource for humankind is being debilitated by enormous over-extraction and intensifying contamination. Insightful advancement and protection of this significant resource needs a careful understanding of aquifer parameters. In the present study, the groundwater level was predicted at first, using a hybrid wavelet artificial neural networks and genetic programming (wavelet-ANN-GP) model. The hybrid model results were then evaluated using the performance evaluation criteria including R square, root mean square error (RMSE), mean absolute error and Nash–Sutcliffe efficiency, respectively ranged from 0.81 to 0.97, 0.070 to 4.45, 0.016 to 3.036 and 0.74 to 0.96, which revealed the high applicability of the hybrid model. The groundwater levels were predicted using wavelet-ANN-GP and then entered into the numerical model. Harmony search (HS) was used for the optimization of the numerical model. Hydraulic conductivity (HC) was estimated during the optimization process. Then, the estimated HC was extended throughout the aquifer domain by the empirical Bayesian kriging (EBK) method. Eventually, estimated hydraulic conductivity was compared by defined hydraulic conductivity through the pumping test. The plotted map of the estimated hydraulic conductivity showed about 87.5% conformity to points with distinct hydraulic conductivities obtained from the pumping test. The results proved the applicability of AI-based meta-heuristic optimization models in water resource studies.

Publisher

IWA Publishing

Subject

Water Science and Technology

Reference38 articles.

1. A wavelet neural network conjunction model for groundwater level forecasting;J. Hydrol.,2011

2. Asghari Moghaddam A. 1991 The Hydrogeology of the Tabriz Area, Iran. PhD dissertation. Tabriz University, Iran.

3. Application of harmony search algorithm to the solution of groundwater management models;Adv. Water Resour.,2009

4. Azerbaijan Territorial Water Association (ATWA) 2009 Detailed Data Collection From Discharges of Pumping Wells and Qanats in the Azarshahr Plain. Unpublished report in Persian.

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3