Machine learning, Water Quality Index, and GIS-based analysis of groundwater quality

Author:

Solangi Ghulam Shabir1,Ali Zouhaib2,Bilal Muhammad2,Junaid Muhammad2,Panhwar Sallahuddin23,Keerio Hareef Ahmed4,Sohu Iftikhar Hussain1,Shahani Sheeraz Gul1,Zaman Noor1

Affiliation:

1. a Department of Civil Engineering, Mehran University of Engineering & Technology, Shaheed Zulfiqar Ali Bhutto Campus, Khairpur Mirs, Pakistan

2. b Department of Civil Engineering, National University of Sciences and Technology, Baluchistan Campus, Quetta, Pakistan

3. c Faculty of Pharmacy, Department of Analytical Chemistry, Gazi University, Ankara, Turkey

4. d Faculty of Engineering & Quantity Surveying, INTI International University, Persiaran Perdana BBN 1800, Putra Nilai, Nilai, Negeri Sembilan, Malaysia

Abstract

Abstract Water is essential for life, as it supports bodily functions, nourishes crops, and maintains ecosystems. Drinking water is crucial for maintaining good health and can also contribute to economic development by reducing healthcare costs and improving productivity. In this study, we employed five different machine learning algorithms – logistic regression (LR), decision tree classifier (DTC), extreme gradient boosting (XGB), random forest (RF), and K-nearest neighbors (KNN) – to analyze the dataset, and their prediction performance were evaluated using four metrics: accuracy, precision, recall, and F1 score. Physiochemical parameters of 30 groundwater samples were analyzed to determine the Water Quality Index (WQI) of Pano Aqil city, Pakistan. The samples were categorized into the following four classes based on their WQI values: excellent water, good water, poor water, and unfit for drinking. The WQI scores showed that only 43.33% of the samples were deemed acceptable for drinking, indicating that the majority (56.67%) were unsuitable. The findings suggest that the DTC and XGB algorithms outperform all other algorithms, achieving overall accuracies of 100% each. In contrast, RF, KNN, and LR exhibit overall accuracies of 88, 75, and 50%, respectively. Researchers seeking to enhance water quality using machine learning can benefit from the models described in this study for water quality prediction.

Publisher

IWA Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3